Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 130 results
1.

Dynamic Light-Induced Protein Patterns at Model Membranes.

blue iLID in vitro
J Vis Exp, 23 Feb 2024 DOI: 10.3791/66531 Link to full text
Abstract: The precise localization and activation of proteins at the cell membrane at a certain time gives rise to many cellular processes, including cell polarization, migration, and division. Thus, methods to recruit proteins to model membranes with subcellular resolution and high temporal control are essential when reproducing and controlling such processes in synthetic cells. Here, a method is described for fabricating light-regulated reversible protein patterns at lipid membranes with high spatiotemporal precision. For this purpose, we immobilize the photoswitchable protein iLID (improved light-inducible dimer) on supported lipid bilayers (SLBs) and on the outer membrane of giant unilamellar vesicles (GUVs). Upon local blue light illumination, iLID binds to its partner Nano (wild-type SspB) and allows the recruitment of any protein of interest (POI) fused to Nano from the solution to the illuminated area on the membrane. This binding is reversible in the dark, which provides dynamic binding and release of the POI. Overall, this is a flexible and versatile method for regulating the localization of proteins with high precision in space and time using blue light.
2.

Photocontrol of small GTPase Ras fused with a photoresponsive protein.

blue VfAU1-LOV in vitro Signaling cascade control
J Biochem, 15 Feb 2024 DOI: 10.1093/jb/mvae017 Link to full text
Abstract: The small GTPase Ras plays an important role in intracellular signal transduction and functions as a molecular switch. In this study, we used a photoresponsive protein as the molecular regulatory device to photoregulate Ras GTPase activity. Photo zipper (PZ), a variant of the photoresponsive protein Aureochrome1 developed by Hisatomi et al. (1-9) was incorporated into the C-terminus of Ras as a fusion protein. The three constructs of the Ras-PZ fusion protein had spacers of different lengths between Ras and PZ. They were designed using an Escherichia coli expression system. The Ras-PZ fusion proteins exhibited photoisomerization upon blue light irradiation and in the dark. Ras-PZ dimerized upon light irradiation. Moreover, Ras GTPase activity, which is accelerated by the Ras regulators guanine nucleotide exchange factors and GTPase-activating proteins, is controlled by photoisomerization. It has been suggested that light-responsive proteins are applicable to the photoswitching of the enzymatic activity of small GTPases as photoregulatory molecular devices.
3.

Light-based juxtacrine signaling between synthetic cells.

blue iLID in vitro Control of cell-cell / cell-material interactions
bioRxiv, 6 Jan 2024 DOI: 10.1101/2024.01.05.574425 Link to full text
Abstract: Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with different types of responses. Here, we design and demonstrate a light-activated contact-dependent communication tool for synthetic cells. We utilize a split bioluminescent protein to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. Our modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.
4.

Photoactivation of LOV domains with chemiluminescence.

blue BcLOV4 iLID Magnets VVD in vitro Extracellular optogenetics
Chem Sci, 11 Dec 2023 DOI: 10.1039/d3sc04815b Link to full text
Abstract: Optogenetics has opened new possibilities in the remote control of diverse cellular functions with high spatiotemporal precision using light. However, delivering light to optically non-transparent systems remains a challenge. Here, we describe the photoactivation of light-oxygen-voltage-sensing domains (LOV domains) with in situ generated light from a chemiluminescence reaction between luminol and H2O2. This activation is possible due to the spectral overlap between the blue chemiluminescence emission and the absorption bands of the flavin chromophore in LOV domains. All four LOV domain proteins with diverse backgrounds and structures (iLID, BcLOV4, nMagHigh/pMagHigh, and VVDHigh) were photoactivated by chemiluminescence as demonstrated using a bead aggregation assay. The photoactivation with chemiluminescence required a critical light-output below which the LOV domains reversed back to their dark state with protein characteristic kinetics. Furthermore, spatially confined chemiluminescence produced inside giant unilamellar vesicles (GUVs) was able to photoactivate proteins both on the membrane and in solution, leading to the recruitment of the corresponding proteins to the GUV membrane. Finally, we showed that reactive oxygen species produced by neutrophil like cells can be converted into sufficient chemiluminescence to recruit the photoswitchable protein BcLOV4-mCherry from solution to the cell membrane. The findings highlight the utility of chemiluminescence as an endogenous light source for optogenetic applications, offering new possibilities for studying cellular processes in optically non-transparent systems.
5.

Light-activated microtubule-based two-dimensional active nematic.

blue iLID in vitro Extracellular optogenetics
Soft Matter, 13 Sep 2023 DOI: 10.1039/d3sm00270e Link to full text
Abstract: We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.
6.

Fluorogenesis: Inducing Fluorescence in a Non-Fluorescent Protein Through Photoinduced Chromophore Transfer of a Genetically Encoded Chromophore.

violet PhoCl in vitro
bioRxiv, 25 Jun 2023 DOI: 10.1101/2023.06.24.546416 Link to full text
Abstract: Fluorescent proteins, while essential for bioimaging, are limited to visualizing cellular localization without offering additional functionality. We report for the first time a strategy to expand the chemical, structural, and functional diversity of fluorescent proteins by harnessing light to induce red fluorescence in a previously non-fluorescent protein. We accomplish this by inducing the transfer of the genetically encoded chromophore from a photocleavable protein (PhoCl1) to a non-fluorescent kinase (MjRibK) inducing red fluorescence in the latter. We have employed analytical and spectroscopic techniques to validate the presence of red fluorescence in MjRibK. Furthermore, molecular dynamics simulations were carried out to investigate the amino acid residues of MjRibK involved in the generation of red fluorescence. Finally, we demonstrate the ability of the red fluorescent MjRibK to operate as a cyclable high-temperature sensor. We anticipate that this light-induced chromophore transfer strategy will open new possibilities for developing multifunctional genetically encoded fluorescent sensors.
7.

A Photoreceptor-Based Hydrogel with Red Light-Responsive Reversible Sol-Gel Transition as Transient Cellular Matrix.

red PhyB/PIF6 in vitro Extracellular optogenetics
Adv Mater Technol, 18 Jun 2023 DOI: 10.1002/admt.202300195 Link to full text
Abstract: Hydrogels with adjustable mechanical properties have been engineered as matrices for mammalian cells and allow the dynamic, mechano-responsive manipulation of cell fate and function. Recent research yields hydrogels, where biological photoreceptors translated optical signals into a reversible and adjustable change in hydrogel mechanics. While their initial application provides important insights into mechanobiology, broader implementation is limited by a small dynamic range of addressable stiffness. Herein, this limitation is overcome by developing a photoreceptor-based hydrogel with reversibly adjustable stiffness from ≈800 Pa to the sol state. The hydrogel is based on star-shaped polyethylene glycol, functionalized with the red/far-red light photoreceptor phytochrome B (PhyB), or phytochrome-interacting factor 6 (PIF6). Upon illumination with red light, PhyB heterodimerizes with PIF6, thus crosslinking the polymers and resulting in gelation. However, upon illumination with far-red light, the proteins dissociate and trigger a complete gel-to-sol transition. The hydrogel's light-responsive mechanical properties are comprehensively characterized and it is applied as a reversible extracellular matrix for the spatiotemporally controlled deposition of mammalian cells within a microfluidic chip. It is anticipated that this technology will open new avenues for the site- and time-specific positioning of cells and will contribute to overcome spatial restrictions.
8.

Self-Regulated and Bidirectional Communication in Synthetic Cell Communities.

blue iLID in vitro Extracellular optogenetics
ACS Nano, 8 May 2023 DOI: 10.1021/acsnano.2c09908 Link to full text
Abstract: Cell-to-cell communication is not limited to a sender releasing a signaling molecule and a receiver perceiving it but is often self-regulated and bidirectional. Yet, in communities of synthetic cells, such features that render communication efficient and adaptive are missing. Here, we report the design and implementation of adaptive two-way signaling with lipid-vesicle-based synthetic cells. The first layer of self-regulation derives from coupling the temporal dynamics of the signal, H2O2, production in the sender to adhesions between sender and receiver cells. This way the receiver stays within the signaling range for the duration sender produces the signal and detaches once the signal fades. Specifically, H2O2 acts as both a forward signal and a regulator of the adhesions by activating photoswitchable proteins at the surface for the duration of the chemiluminescence. The second layer of self-regulation arises when the adhesions render the receiver permeable and trigger the release of a backward signal, resulting in bidirectional exchange. These design rules provide a concept for engineering multicellular systems with adaptive communication.
9.

A disordered tether to iLID improves photoswitchable protein patterning on model membranes.

blue iLID in vitro
Chem Commun (Camb), 6 Apr 2023 DOI: 10.1039/d3cc00709j Link to full text
Abstract: Reversible protein patterning on model membranes is important to reproduce spatiotemporal protein dynamics in vitro. An engineered version of iLID, disiLID, with a disordered domain as a membrane tether improves the recruitment of Nano under blue light and the reversibility in the dark, which enables protein patterning on membranes with higher spatiotemporal precision.
10.

Allosteric inactivation of an engineered optogenetic GTPase.

blue AsLOV2 in vitro
Proc Natl Acad Sci U S A, 27 Mar 2023 DOI: 10.1073/pnas.2219254120 Link to full text
Abstract: Optogenetics is a technique for establishing direct spatiotemporal control over molecular function within living cells using light. Light application induces conformational changes within targeted proteins that produce changes in function. One of the applications of optogenetic tools is an allosteric control of proteins via light-sensing domain (LOV2), which allows direct and robust control of protein function. Computational studies supported by cellular imaging demonstrated that application of light allosterically inhibited signaling proteins Vav2, ITSN, and Rac1, but the structural and dynamic basis of such control has yet to be elucidated by experiment. Here, using NMR spectroscopy, we discover principles of action of allosteric control of cell division control protein 42 (CDC42), a small GTPase involved in cell signaling. Both LOV2 and Cdc42 employ flexibility in their function to switch between "dark"/"lit" or active/inactive states, respectively. By conjoining Cdc42 and phototropin1 LOV2 domains into the bi-switchable fusion Cdc42Lov, application of light-or alternatively, mutation in LOV2 to mimic light absorption-allosterically inhibits Cdc42 downstream signaling. The flow and patterning of allosteric transduction in this flexible system are well suited to observation by NMR. Close monitoring of the structural and dynamic properties of dark versus "lit" states of Cdc42Lov revealed lit-induced allosteric perturbations that extend to Cdc42's downstream effector binding site. Chemical shift perturbations for lit mimic, I539E, have distinct regions of sensitivity, and both the domains are coupled together, leading to bidirectional interdomain signaling. Insights gained from this optoallosteric design will increase our ability to control response sensitivity in future designs.
11.

An engineered N-acyltransferase-LOV2 domain fusion protein enables light-inducible allosteric control of enzymatic activity.

blue AsLOV2 in vitro
J Biol Chem, 24 Feb 2023 DOI: 10.1016/j.jbc.2023.103069 Link to full text
Abstract: Transferases are ubiquitous across all known life. While much work has been done to understand and describe these essential enzymes, there have been minimal efforts to exert tight and reversible control over their activity for various biotechnological applications. Here, we apply a rational, computation-guided methodology to design and test a transferase-class enzyme allosterically regulated by Light-oxygen-voltage-sensing domain (LOV2). We utilize computational techniques to determine the intrinsic allosteric networks within N-acyltransferase (Orf11/*Dbv8) and identify potential allosteric sites on the protein's surface. We insert LOV2 at the predicted allosteric site, exerting reversible control over enzymatic activity. We demonstrate blue-light regulation of N-acyltransferase (Orf11/*Dbv8) function. Our study for the first time demonstrates optogenetic regulation of a transferase-class enzyme as a proof-of-concept for controllable transferase design. This successful design opens the door for many future applications in metabolic engineering and cellular programming.
12.

Engineering of bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s.

blue green red Am1 c0023g2/BAm green Am1 c0023g2/BAm red AsLOV2 TULIP CHO-K1 HEK293T in vitro S. cerevisiae Transgene expression Multichromatic
Nat Methods, 23 Feb 2023 DOI: 10.1038/s41592-023-01764-8 Link to full text
Abstract: Optogenetic tools for controlling protein-protein interactions (PPIs) have been developed from a small number of photosensory modules that respond to a limited selection of wavelengths. Cyanobacteriochrome (CBCR) GAF domain variants respond to an unmatched array of colors; however, their natural molecular mechanisms of action cannot easily be exploited for optogenetic control of PPIs. Here we developed bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s by engineering synthetic light-dependent interactors for a red/green GAF domain. The systematic approach enables the future engineering of the broad chromatic palette of CBCRs for optogenetics use. BICYCLs are among the smallest optogenetic tools for controlling PPIs and enable either green-ON/red-OFF (BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 800-fold state selectivity. The access to green wavelengths creates new opportunities for multiplexing with existing tools. We demonstrate the utility of BICYCLs for controlling protein subcellular localization and transcriptional processes in mammalian cells and for multiplexing with existing blue-light tools.
13.

Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities.

blue red iLID PhyB/PIF6 in vitro Extracellular optogenetics Multichromatic
Small, 4 Jan 2023 DOI: 10.1002/smll.202206474 Link to full text
Abstract: Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.
14.

A red light-responsive photoswitch for deep tissue optogenetics.

near-infrared red BphP1/Q-PAS1 DrBphP MagRed HEK293T HeLa in vitro Neuro-2a Transgene expression
Nat Biotechnol, 13 Jun 2022 DOI: 10.1038/s41587-022-01351-w Link to full text
Abstract: Red light penetrates deep into mammalian tissues and has low phototoxicity, but few optogenetic tools that use red light have been developed. Here we present MagRed, a red light-activatable photoswitch that consists of a red light-absorbing bacterial phytochrome incorporating a mammalian endogenous chromophore, biliverdin and a photo-state-specific binder that we developed using Affibody library selection. Red light illumination triggers the binding of the two components of MagRed and the assembly of split-proteins fused to them. Using MagRed, we developed a red light-activatable Cre recombinase, which enables light-activatable DNA recombination deep in mammalian tissues. We also created red light-inducible transcriptional regulators based on CRISPR-Cas9 that enable an up to 378-fold activation (average, 135-fold induction) of multiple endogenous target genes. MagRed will facilitate optogenetic applications deep in mammalian organisms in a variety of biological research areas.
15.

Spatially Defined Gene Delivery into Native Cells with the Red Light-Controlled OptoAAV Technology.

red PhyB/PIF6 A-431 in vitro
Curr Protoc, Jun 2022 DOI: 10.1002/cpz1.440 Link to full text
Abstract: The OptoAAV technology allows spatially defined delivery of transgenes into native target cells down to single-cell resolution by the illumination with cell-compatible and tissue-penetrating red light. The system is based on an adeno-associated viral (AAV) vector of serotype 2 with an engineered capsid (OptoAAV) and a photoreceptor-containing adapter protein mediating the interaction of the OptoAAV with the surface of the target cell in response to low doses of red and far-red light. In this article, we first provide detailed protocols for the production, purification, and analysis of the OptoAAV and the adapter protein. Afterward, we describe in detail the application of the OptoAAV system for the light-controlled transduction of human cells with global and patterned illumination. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production, purification, and analysis of PhyB-DARPinEGFR adapter protein Basic Protocol 2: Production, purification, and analysis of OptoAAV Basic Protocol 3: Red light-controlled viral transduction with the OptoAAV system Support Protocol: Spatially resolved transduction of two transgenes with the OptoAAV system.
16.

Synthetic cells with self-activating optogenetic proteins communicate with natural cells.

blue EL222 iLID in vitro Extracellular optogenetics
Nat Commun, 28 Apr 2022 DOI: 10.1038/s41467-022-29871-8 Link to full text
Abstract: Development of regulated cellular processes and signaling methods in synthetic cells is essential for their integration with living materials. Light is an attractive tool to achieve this, but the limited penetration depth into tissue of visible light restricts its usability for in-vivo applications. Here, we describe the design and implementation of bioluminescent intercellular and intracellular signaling mechanisms in synthetic cells, dismissing the need for an external light source. First, we engineer light generating SCs with an optimized lipid membrane and internal composition, to maximize luciferase expression levels and enable high-intensity emission. Next, we show these cells' capacity to trigger bioprocesses in natural cells by initiating asexual sporulation of dark-grown mycelial cells of the fungus Trichoderma atroviride. Finally, we demonstrate regulated transcription and membrane recruitment in synthetic cells using bioluminescent intracellular signaling with self-activating fusion proteins. These functionalities pave the way for deploying synthetic cells as embeddable microscale light sources that are capable of controlling engineered processes inside tissues.
17.

Motor processivity and speed determine structure and dynamics of microtubule-motor assemblies.

blue iLID in vitro Extracellular optogenetics
bioRxiv, 10 Apr 2022 DOI: 10.1101/2021.10.22.465381 Link to full text
Abstract: Active matter systems can generate highly ordered structures, avoiding equilibrium through the consumption of energy by individual constituents. How the microscopic parameters that characterize the active agents are translated to the observed mesoscopic properties of the assembly has remained an open question. These active systems are prevalent in living matter; for example, in cells, the cytoskeleton is organized into structures such as the mitotic spindle through the coordinated activity of many motor proteins walking along microtubules. Here, we investigate how the microscopic motor-microtubule interactions affect the coherent structures formed in a reconstituted motor-microtubule system. This question is of deeper evolutionary significance as we suspect motor and microtubule type contribute to the shape and size of resulting structures. We explore key parameters experimentally and theoretically, using a variety of motors with different speeds, proces-sivities, and directionalities. We demonstrate that aster size depends on the motor used to create the aster, and develop a model for the distribution of motors and microtubules in steady-state asters that depends on parameters related to motor speed and processivity. Further, we show that network contraction rates scale linearly with the single-motor speed in quasi one-dimensional contraction experiments. In all, this theoretical and experimental work helps elucidate how microscopic motor properties are translated to the much larger scale of collective motor-microtubule assemblies.
18.

B12-induced reassembly of split photoreceptor protein enables photoresponsive hydrogels with tunable mechanics.

green TtCBD in vitro Extracellular optogenetics
Sci Adv, 1 Apr 2022 DOI: 10.1126/sciadv.abm5482 Link to full text
Abstract: Although the tools based on split proteins have found broad applications, ranging from controlled biological signaling to advanced molecular architectures, many of them suffer from drawbacks such as background reassembly, low thermodynamic stability, and static structural features. Here, we present a chemically inducible protein assembly method enabled by the dissection of the carboxyl-terminal domain of a B12-dependent photoreceptor, CarHC. The resulting segments reassemble efficiently upon addition of cobalamin (AdoB12, MeB12, or CNB12). Photolysis of the cofactors such as AdoB12 and MeB12 further leads to stable protein adducts harboring a bis-His-ligated B12. Split CarHC enables the creation of a series of protein hydrogels, of which the mechanics can be either photostrengthened or photoweakened, depending on the type of B12. These materials are also well suited for three dimensional cell culturing. Together, this new protein chemistry, featuring negligible background autoassembly, stable conjugation, and phototunability, has opened up opportunities for designing smart materials.
19.

An Optogenetic Toolbox for Synergistic Regulation of Protein Abundance.

blue iLID LOVTRAP in vitro S. cerevisiae Transgene expression
ACS Synth Biol, 19 Nov 2021 DOI: 10.1021/acssynbio.1c00350 Link to full text
Abstract: Optogenetic tools have been proven to be useful in regulating cellular processes via an external signal. Light can be applied with high spatial and temporal precision as well as easily modulated in quantity and quality. Natural photoreceptors of the light oxygen voltage (LOV) domain family have been characterized in depth, especially the LOV2 domain of Avena sativa (As) phototropin 1 and its derivatives. Information on the behavior of LOV2 variants with changes in the photocycle or the light response has been recorded. Here, we applied well-described photocycle mutations on the AsLOV2 domain of a photosensitive transcription factor (psTF) as well as its variant that is part of the photosensitive degron (psd) psd3 in Saccharomyces cerevisiae. In vivo and in vitro measurements revealed that each photoreceptor component of the light-sensitive transcription factor and the psd3 module can be modulated in its light sensitivity by mutations that are known to prolong or shorten the dark-reversion time of AsLOV2. Yet, only two of the mutations showed differences in the in vivo behavior in the context of the psd3 module. For the AsLOV2 domain in the context of the psTF, we observed different characteristics for all four variants. Molecular dynamics simulations showed distinct influences of the shortened Jα helix and the V416L mutation in the context of the psd3 photoreceptor. In conclusion, we demonstrated the tunability of two optogenetic tools with a set of mutations that affect the photocycle of the inherent photoreceptors. As these optogenetic tools are concurrent in their action, pleiotropic effects on target protein abundance are achievable with the simultaneous action of the diverse photoreceptor variants.
20.

A novel mechanism of bulk cytoplasmic transport by cortical dynein in Drosophila ovary.

blue LOVTRAP in vitro Control of cytoskeleton / cell motility / cell shape Extracellular optogenetics
bioRxiv, 13 Nov 2021 DOI: 10.1101/2021.11.12.468440 Link to full text
Abstract: Cytoplasmic dynein, a major minus-end directed microtubule motor, plays essential roles in eukaryotic cells. Drosophila oocyte growth is mainly dependent on the contribution of cytoplasmic contents from the interconnected sister cells, nurse cells. We have previously shown that cytoplasmic dynein is required for Drosophila oocyte growth, and assumed that it transports cargoes along microtubule tracks from nurse cells to the oocyte. Here we report that instead transporting cargoes along microtubules into the oocyte, cortical dynein actively moves microtubules in nurse cells and from nurse cells to the oocyte via the cytoplasmic bridges, the ring canals. We demonstrate this microtubule movement is sufficient to drag even inert cytoplasmic particles through the ring canals to the oocyte. Furthermore, replacing dynein with a minus-end directed plant kinesin linked to the actin cortex is sufficient for transporting organelles and cytoplasm to the oocyte and driving its growth. These experiments show that cortical dynein can perform bulk cytoplasmic transport by gliding microtubules along the cell cortex and through the ring canals to the oocyte. We propose that the dynein-driven microtubule flow could serve as a novel mode of cargo transport for fast cytoplasmic transfer to support rapid oocyte growth.
21.

OptoAssay - Light-controlled Dynamic Bioassay Using Optogenetic Switches.

red PhyB/PIF6 in vitro Extracellular optogenetics
bioRxiv, 8 Nov 2021 DOI: 10.1101/2021.11.06.467572 Link to full text
Abstract: Circumventing the limitations of current bioassays, we introduce the first light-controlled assay, the OptoAssay, towards wash- and pump-free point-of-care diagnostics. Extending the capabilities of standard bioassays with light-dependent and reversible interaction of optogenetic switches, OptoAssays enable a bi-directional movement of assay components, only by changing the wavelength of light. Combined with smartphones, OptoAssays obviate the need for external flow control systems like pumps or valves and signal readout devices.
22.

Gigavalent display of proteins on monodisperse polyacrylamide hydrogels as a versatile modular platform for functional assays and protein engineering.

violet PhoCl in vitro Extracellular optogenetics
bioRxiv, 31 Oct 2021 DOI: 10.1101/2021.10.30.466587 Link to full text
Abstract: The robust modularity of biological components that are assembled into complex functional systems is central to synthetic biology. Here we apply modular “plug and play” design principles to a microscale solid phase protein display system that enables protein purification and functional assays for biotherapeutics. Specifically, we capture protein molecules from cell lysates on polyacrylamide hydrogel display beads (‘PHD beads’), made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA). Anchors form covalent bonds with fusion proteins bearing cognate tag recognition (SNAP and Halo-tags) in specific, orthogonal and stable fashion. Given that these anchors are copolymerised throughout the 3D structure of the beads, proteins are also distributed across the entire bead sphere, allowing attachment of ∼109 protein molecules per bead (Ø 20 μm). This mode of attachment reaches a higher density than possible on widely used surface-modified beads, and additionally mitigates surface effects that often complicate studies with proteins on beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either non-covalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher and SnpTag). Proteins can be displayed in their monomeric forms, but also reformatted as a multivalent display (using secondary capture modules that create branches) to test the contributions of avidity and multivalency towards protein function. Finally, controlled release of modules by irradiation of light is achieved by incorporating the photocleavable protein PhoCl: irradiation severs the displayed protein from the solid support, so that functional assays can be carried out in solution. As a demonstration of the utility of valency engineering, an antibody drug screen is performed, in which an anti-TRAIL-R1 scFv protein is released into solution as monomers-hexamers, showing a ∼50-fold enhanced potency in the pentavalent format. The ease of protein purification on solid support, quantitative control over presentation and release of proteins and choice of valency make this experimental format a versatile, modular platform for large scale functional analysis of proteins, in bioassays of protein-protein interactions, enzymatic catalysis and bacteriolysis.
23.

Engineering Photoresponsive Ligand Tethers for Mechanical Regulation of Stem Cells.

cyan pdDronpa1 in vitro Control of cytoskeleton / cell motility / cell shape Cell differentiation Extracellular optogenetics
Adv Mater, 24 Sep 2021 DOI: 10.1002/adma.202105765 Link to full text
Abstract: Regulating stem cell functions by precisely controlling the nanoscale presentation of bioactive ligands has a substantial impact on tissue engineering and regenerative medicine but remains a major challenge. Here it is shown that bioactive ligands can become mechanically "invisible" by increasing their tether lengths to the substrate beyond a critical length, providing a way to regulate mechanotransduction without changing the biochemical conditions. Building on this finding, light switchable tethers are rationally designed, whose lengths can be modulated reversibly by switching a light-responsive protein, pdDronpa, in between monomer and dimer states. This allows the regulation of the adhesion, spreading, and differentiation of stem cells by light on substrates of well-defined biochemical and physical properties. Spatiotemporal regulation of differential cell fates on the same substrate is further demonstrated, which may represent an important step toward constructing complex organoids or mini tissues by spatially defining the mechanical cues of the cellular microenvironment with light.
24.

Light-Responsive Dynamic Protein Hydrogels Based on LOVTRAP.

blue LOVTRAP in vitro Extracellular optogenetics
Langmuir, 15 Aug 2021 DOI: 10.1021/acs.langmuir.1c01699 Link to full text
Abstract: Protein-based hydrogels can mimic many aspects of native extracellular matrices (ECMs) and are promising biomedical materials that find various applications in cell proliferation, drug/cell delivery, and tissue engineering. To be adapted for different tasks, it is important that the mechanical and/or biochemical properties of protein-based hydrogels can be regulated by external stimuli. Light as a regulation stimulus is of advantage because it can be easily applied in demanded spatiotemporal manners. The noncovalent binding between the light-oxygen-voltage-sensing domain 2 (LOV2) and its binding partner ZDark1 (zdk1), named as LOVTRAP, is a light-responsive interaction. The binding affinity of LOVTRAP is much higher in dark than that under blue light irradiation. Taking advantage of these light-responsive interactions, herein we endeavored to use LOVTRAP as a crosslinking mechanism to engineer light-responsive protein hydrogels. Using LOV2-containing and zdk1-containing multifunctional protein building blocks, we successfully engineered a light-responsive protein hydrogel whose viscoelastic properties can change in response to light: in the dark, the hydrogel showed higher storage modulus; under blue light irradiation, the storage modulus decreased. Due to the noncovalent nature of the LOVTRAP, the engineered LOVTRAP protein hydrogels displayed shear-thinning and self-healing properties and served as an excellent injectable protein hydrogel. We anticipated that this new class of light-responsive protein hydrogels will broaden the scope of dynamic protein hydrogels and help develop other light-responsive protein hydrogels for biomedical applications.
25.

Cell to Cell Signaling through Light in Artificial Cell Communities: Glowing Predator Lures Prey.

blue iLID in vitro Extracellular optogenetics
ACS Nano, 21 Jun 2021 DOI: 10.1021/acsnano.1c01600 Link to full text
Abstract: Cells commonly communicate with each other through diffusible molecules but nonchemical communication remains elusive. While bioluminescent organisms communicate through light to find prey or attract mates, it is still under debate if signaling through light is possible at the cellular level. Here, we demonstrate that cell to cell signaling through light is possible in artificial cell communities derived from biomimetic vesicles. In our design, artificial sender cells produce an intracellular light signal, which triggers the adhesion to receiver cells. Unlike soluble molecules, the light signal propagates fast, independent of diffusion and without the need for a transporter across membranes. To obtain a predator-prey relationship, the luminescence predator cells is loaded with a secondary diffusible poison, which is transferred to the prey cell upon adhesion and leads to its lysis. This design provides a blueprint for light based intercellular communication, which can be used for programing artificial and natural cell communities.
Submit a new publication to our database